

„Game	Technology“																							Winter	Semester	2017/2018																							Solution	4																											Page	1/4	
	

	
	

„Game	Technology“	
Winter	Semester	2017/2018	

	
Solution	4	

	

General	Information	
• The	exercises	may	be	solved	by	teams	of	up	to	three	people.	
• The	solutions	have	to	be	uploaded	to	the	Git	repositories	assigned	to	the	individual	teams.	
• The	submission	date	(for	practical	and	theoretical	tasks)	is	noted	on	top	of	each	exercise	sheet.	
• If	you	have	questions	about	the	exercises	write	a	mail	to	game-technology@kom.tu-darmstadt.de	or	

use	the	forum	at	https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewforum.php?f=557	
	

Prof.	Dr.-Ing.	Ralf	Steinmetz	
Multimedia	communications	Lab	
	
Dipl.	Inf.	Robert	Konrad	
Polona	Caserman,	M.Sc.

„Game	Technology“																							Winter	Semester	2017/2018																							Solution	4																											Page	2/4	
	

1.	Practical	Tasks:	Textures	and	Depth	Buffers	(5	Points)	
Extend	your	software	renderer	to	support	texture	mapping	and	depth	buffering.	For	closer	instructions	see	the	
comments	in	the	shadePixel	function	in	the	source	code.	

https://github.com/TUDGameTechnology/Exercise4.git	contains	code	for	texture	coordinate	loading	and	
interpolation.	You	can	either	copy	the	code	changes	manually	or	just	pull	them	into	your	own	repository	using	
https://github.com/TUDGameTechnology/Exercise4.git	

	

Please	remember	to	push	into	a	branch	called	“exercise4”.	

	

You	can	find	the	solution	for	the	practical	task	at	https://github.com/TUDGameTechnology/Solution4.git.

	

2.	Hypertheoretical	Task:	Matrix	Multiplication	Performance	(5	Points)	
2.1	Weird	things	(1	Point)	
In	lecture	4,	the	three	problems	listed	below	were	addressed.	Choose	one	of	them	and	describe	both	the	
problem	and	the	possible	solution	in	your	own	words.	
	
Weird	depth	problems	
Weird	textures	
Weird	rotations	
Weird	depth	problems

• Our	result	depends	on	the	depth	order	in	which	we	painted	
• Solution:	Use	a	z-Buffer,	only	write	the	color	if	it	is	in	front	of	the	front-most	pixel	painted	so	far	

Figure 1 Left:	Teapot	rendered	without	z-buffer.	Right:	Rendered	with	z-buffer.	
(http://forum.unity3d.com/threads/problem-when-rendering-a-3d-module-with-z-buffer-disabled-ztest-
always.143075/)

Weird	textures
• The	textures	are	sampled	equally	regardless	of	the	perspective	(we're	doing	a	2D	operation	where	a	

3D	operation	would	be	appropriate)	
• We	can	fix	it	by	perspective	correct	texture	mapping.	

„Game	Technology“																							Winter	Semester	2017/2018																							Solution	4																											Page	3/4	
	

Figure 2: The effect of perspective correct texture mapping
(https://en.wikipedia.org/wiki/Texture_mapping#/media/File:Perspective_correct_texture_mapping.jpg)

Weird	rotations

• Rotations	with	Euler	angles	are	weird	to	interpolate	
• We	can	have	gimbal	lock	
• Solution	is	to	use	quaternions	

Figure 3: Gimbal lock: After one rotation, two of the gimbals are in the same plane, so one degree of freedom is lost,
since rotating around two different axes will result in the same rotation.
(https://en.wikipedia.org/wiki/Texture_mapping#/media/File:Perspective_correct_texture_mapping.jpg)

	

2.2	Matrix	analysis	(2	Points)	
a)	What	geometric	operation(s)	does	this	matrix	encode?	How	can	you	tell?	
	

5 0 0 0
0 −5 0 2.5
0 0 5 0
0 0 0 1

	

	
We	multiply	the	matrix	to	a	general	vector.	We	get	the	following	result:	
	

5 0 0 0
0 5 0 2.5
0 0 5 0
0 0 0 1

𝑥
𝑦
𝑧
1

=

5𝑥
5𝑦 + 2.5
5𝑧
1

=

5𝑥
5𝑦
5𝑧
1

+

0
2.5
0
0

	

	
The	vector	is	scaled	uniformly	by	the	factor	5,	and	is	translated	by	2.5	units	in	the	y-direction.	

	
b)	What	geometric	operation(s)	does	this	matrix	encode?	How	can	you	tell?	
	

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0

	
We	multiply	the	matrix	to	a	general	vector.	We	get	the	following	result:	

„Game	Technology“																							Winter	Semester	2017/2018																							Solution	4																											Page	4/4	
	

	
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

𝑥
𝑦
𝑧
𝑤

=

𝑥
𝑦
𝑧
𝑧

	
We	get	a	matrix	with	w	replaced	by	z.	If	we	turn	this	into	a	homogenous	coordinate	again	by	dividing	by	the	
fourth	row,	we	get:	

𝑥
𝑧
𝑦
𝑧
1
1

	

	
This	vector	is	a	very	simple	perspective	projection.	

	

2.3	Alphabet	war	(1	Point)	
Your	game	engine’s	rasterizer	uses	a	z-buffer.	You	want	to	display	decals	on	objects.	You	implement	them	by	
creating	quadrilaterals	which	are	exactly	aligned	with	the	target	surface	and	which	have	a	distance	of	0	to	the	
surface	(i.e.	like	gluing	a	poster	to	a	wall).	
	
Your	game	shows	weird	artifacts	where	the	surface	and	the	decal	are	both	partly	visible.	What	happened	and	
what	could	be	a	fix?	
	
The	resulting	effect	is	referred	to	as	z-fighting.	When	two	surfaces	share	the	same	depth,	there	can	be	
problems	due	to	floating	point	inaccuracies.	

A	simple	fix	could	be	to	apply	the	decal	with	some	distance	to	the	target	surface	that	is	larger	than	the	
inaccuracies,	or	to	render	it	after	the	surface	has	been	drawn	without	depth	testing	(but	only	if	we	know	that	
the	decal	is	not	obstructed	by	something	else).

Figure 4: Examples of z-fighting (https://upload.wikimedia.org/wikipedia/commons/5/5f/ZfightingCB.png)

2.4	Shading	(1	Point)	
What	is	the	difference	between	Phong	and	Gouraud-Shading?	Explain	in	your	own	words.	
In	Gouraud-Shading	the	lighting	is	calculated	per	vertex	(directly	using	the	normal	and	then	interpolating	the	
resulting	colors	between	vertices).		
	
In	Phong-Shading	the	lighting	is	calculated	per	pixel	(interpolating	the	normal	between	vertices).	Per	pixel	
calculations	are	generally	more	exact	and	nicer	looking	but	also	slower.		

	

