
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide
24-Oct-15

Prof. Dr.-Ing. Ralf Steinmetz
KOM - Multimedia Communications Lab

Template all v.3.4
PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology
Lecture 2 – 24.10.2015

Timing & Basic Game Mechanics

Dr.-Ing. Florian Mehm

KOM – Multimedia Communications Lab 2

Timing
 Different timing options
 Animations

Basic Game Mechanics
 Game Loop
 Multithreading
 Collision

C++
 Memory management
 Strings

Overview

KOM – Multimedia Communications Lab 3

Monitors commonly run at 60 Hz
 Games should provide a new frame

every ~16 ms
 Movies (used to) operate at 24 Hz

(40 ms)

Why work harder than that?
 Some people have been shown to be

able to distinguish up to 90 Hz
images
 The frame rate determines how fast

the game can react
 Gamers want speed!
 Virtual Reality
 HTC Vive: 90 Hz
 Oculus Rift: 90 Hz

Timing

KOM – Multimedia Communications Lab 4

„"At Ubisoft for a long time we wanted to push 60 fps. I don't think it was a
good idea because you don't gain that much from 60 fps and it doesn't
look like the real thing. It's a bit like The Hobbit movie, it looked really
weird.” Nicolas Guérin, World Level Design Director, Assassin’s Creed
Unity http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-
s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241

See also “black bars” discussion, e.g. around The Order 1886

Timing

http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241

KOM – Multimedia Communications Lab 5

In a real camera, the filmed objects
change during a frame

The movements are blurred
 Fast moving objects more
 More the longer the exposure time is

In a virtual camera, without

additional measures, no blurring
is present
 All objects rendered at a perfect

instant in time
 Similar to the missing depth of field

Motion Blur

Source: Wikipedia

KOM – Multimedia Communications Lab 6

Directional blur along a pixel’s velocity
Introduces artifacts for fast-moving objects

Motion Blur algorithm example

Source: http://docs.unity3d.com/Manual/script-CameraMotionBlur.html

KOM – Multimedia Communications Lab 7

Cooperative Multithreading
Often used in games

Returning
 Every (game) object is called
 Carries out its calculations…
 …and returns, saving its state

+ Synchronization easier to
handle
- Can’t use multiple CPU cores

Preemptive Multithreading
 Used in current operating systems

Returning
 Every process is called
 The scheduler takes control back
 State is saved for the process

+ Stalled threads don’t stall the
whole system
- Needs proper synchronization
- Additional costs (saving all state)

Used for whole systems (e.g.
physics)

Multithreading

KOM – Multimedia Communications Lab 8

Cooperative Multithreading
while (true)
{
 DoSomething();
 yield(); // Explicitly return control
 DoAnotherThing();
}

while (true)
{
 DoSomething();
 DoAnotherThing();
}

Preemptive Multithreading

while (true)
{
 // Might be preempted here...
 DoSomething();
 // ...or here...
 DoAnotherThing();
}

Multithreading

KOM – Multimedia Communications Lab 9

Communication between threads

Critical Sections
int a = 5;
if (a == 10)
{
 // Will never happen...
 print("Boo!");
}

Multithreading Problems

KOM – Multimedia Communications Lab 10

Cooperative Multithreading
 E.g. Unity‘s coroutines
 Simple enough to use without preemptive problems, but powerful enough for

many purposes

Preemptive Multithreading
 Most often for larger systems
 For systems which take longer than a frame to compute results, e.g. AI queries
 For systems that run all the time, e.g. physics
 Can make use of multicore systems

Massively parallel execution
 General purpose computation on GPU, Compute Shaders
Will handle this variant when we look at hardware rendering

Multithreading - Uses in Games

KOM – Multimedia Communications Lab 11

Which time to use?

Hardware timers vs. very coarse timers

Timing

Frame n

Terrain.Render() ObjectA.Render() ObjectB.Render()

t_1 t_2 t_3

KOM – Multimedia Communications Lab 12

Calculate a time that is used throughout the frame

Further advantage: Can scale/pause this time

Virtual frame time

Frame n

Terrain.Render() ObjectA.Render() ObjectB.Render()

t_1 = t_frame

t_frame t_frame t_frame

KOM – Multimedia Communications Lab 13

Which head position to use?

Future positions often predicted by HMD
 E.g. using the measured acceleration, physiological models
 Can use timewarp mechanism  will look at this in a later lecture

Icon by Hans Gerhard Meier, Noun Project

Virtual Reality Frame Time

Frame n

t_1 t_2 t_3

KOM – Multimedia Communications Lab 14

Calculate the state without information about the previous state
 Based solely on parameters
 Current time
 Configuration parameters
 Usually ranged [0-1]; later scaled to correct amount
 Allows adding/multiplying using sine/exp/…

Example: Simple wind animation of trees

Procedural Animations

KOM – Multimedia Communications Lab 15

Original Source: “The Inner Workings of Fortnite’s Shader Based
Procedural Animation” (Jonathan Lindquist, Epic, GDC Talk)

Effect for “self-building structures”
Composed of several components

See implementation at http://mehm.net/blog/?p=1278

Procedural Animation Example

http://mehm.net/blog/?p=1278
http://mehm.net/blog/?p=1278

KOM – Multimedia Communications Lab 16

Think in procedural terms
 Input: t, e.g. in [0, 1]
 Output: Animated value f(t)

Combination of several effects
 f(t) = g(t) * h(t)
…

Stretching of input parameters
 E.g. for easing

Later in shaders
 Think of equivalence to gradients

Procedural Animation „Mindset“

http://easings.net/

KOM – Multimedia Communications Lab 17

Calculated based on previous states
 Usually not from the beginning of the game
 Instead, use a window of the last frames or a running average
 Often combined with user input
 Used for animations where a “closed” form is not possible or too complicated

Example: Physical animation
 Very simple: Take the position and velocity of the last frame
 Calculate a velocity for the current frame
 Add the velocity to the object

Iterative Animations

KOM – Multimedia Communications Lab 18

Set up windowing system, OS callbacks, initialize libraries/devices, …

Do
 Read data from input devices
 Calculate new game state
 Render frame
 (Wait for Vsync)

While the game is active

Unload libraries, free memory, close window, …

Game Loop

KOM – Multimedia Communications Lab 19

Unity
 Actual game loop implemented in C++
 Components provided by programmers compiled to .net (C#, JS, Boo)
 Update()-functions on all active components are run

Unreal Engine
 Found in UEngine::Tick()
 Scripts provided by users can also be Blueprint

Engine core  Scripts and components
 Performance optimizations by the engine provider
 Easier to handle for programmers
 But less adaptable and transparent ( Unity)

Hidden Game Loop

KOM – Multimedia Communications Lab 20

Usually handled as Game Object (or similar construct)
 Saves all relevant game state
 Handles relevant input
 Updates state each frame

Component-Based Game Objects
 Separate component for different tasks
 Rendering
 Position
 Input handling
 …
 Avoid object-oriented hierarchies

Game State

GameObject

DynamicObject StaticObject

NPC Player

GameObject

Transform

MeshRenderer

Controller

KOM – Multimedia Communications Lab 21

Hierarchies
+ More behavior defined at
compile-time
+ Explicit inter-object
communication
- (If not restricted): Diamond-

shaped hierarchies/multiple
parents

- Resistant to change

Negative Example
 „Weapons“ and „Tools“
 GDD defines a new weapon
which partly acts like a tool

Components
+ Re-usable behaviors
+ Combinable at runtime
+ Specialization, encapsulation
- Inter-component communication
- E.g. Unity: Performance hits if

other components are searched
each frame

Game Objects

KOM – Multimedia Communications Lab 22

Class hierarchy
 Use power of virtual classes, polymorphism
 Model objects as well as needed

Encapsulate differences with strategy pattern
 Owning class handles everything that is shared between all strategies
 Defers to individual strategies for differing behaviours

Example: Buildings in a RTS-game
 Encapsulating class handles mesh loading, animations, …
 Strategies to handle different behaviours (produced units, …)

Best of both worlds

KOM – Multimedia Communications Lab 23

Intersection
 Objects are overlapping each other
 In reality, objects would deform/break/...
 Unwanted state

Collision
 Objects ideally have only one contact point/edge/face
 Calculate collision response based on this state

Collision Response
 Separate bodies or
 (Stable) contact

Collisions

KOM – Multimedia Communications Lab 24

x times per second
{

For each object
{

Move object
Check for collisions
If (collision detected) move back

}

}

Collisions

KOM – Multimedia Communications Lab 25

Exact collision will almost never happen
 Due to floating point issues and discrete frame time
 Different coping strategies
 Ignore/Keep pushing objects out of each other
 (Smaller time steps)
 Find the exact time when collision happened and step to this time

Collision response for multiple objects
 Often resolved one after the other
 E.g. resolve b-c, then a-c, then a-b
 But in reality, solved all at once

Collisions and Timing

c
b

a

KOM – Multimedia Communications Lab 26

Separate from actual frame rate
 Keep timer for game logic
 Update in periodic time steps
 Rendering done at frame rate

Otherwise, dependent on performance of the hardware

Game logic timing

Source: http://telkomgaming.co.za/old-versus-new-remembering-the-turbo-button/

KOM – Multimedia Communications Lab 27

Timing
 Use a virtual time throughout the frame
 Use smaller ticks for systems such as physics
 Motion Blur
 Multithreading

Animations
 Procedural
 Iterative

Game Loop
 Game state
 Collision detection

Summary

KOM – Multimedia Communications Lab 28

Static Memory
 Global variables
 Handled by the compiler, allocated and de-allocated automatically

Stack Memory
 Semi-automatically handled by the compiler
 Function parameters, local variables, implicit data (e.g. return addresses)

Heap Memory
 All manually allocated memory

Memory Management

KOM – Multimedia Communications Lab 29

Allocated dynamically
 C++ handles nothing for us -> requests memory from the OS
 Can be VERY slow and unreliable

Difference to Java
 Java allocates a large block of memory at the beginning
 Allocates memory to the program during runtime
 Manages this memory
  Can still be slow, e.g. if physical RAM is exhausted
 Garbage Collection

Custom memory management
 Utilize memory access patterns to optimize
 Avoid allocating heap memory altogether in critical sections

Heap Memory

KOM – Multimedia Communications Lab 30

Managing your own memory for often-used structures

Example: Allocate enough memory for all game objects of one type
 Find typical numbers by testing or analysis
 Manage the block by yourself

Stack vs Pool-based
 Stack: Allocating and freeing using one pointer
 Pool: Manage list of free blocks

Keeps data local
 Can be better for cache efficiency

Heap Memory Examples

KOM – Multimedia Communications Lab 31

Source: „Systems Performance: Enterprise and the Cloud”, Brendan
Gregg

Effects of cache performance

KOM – Multimedia Communications Lab 32

Variable on the stack
 int foo;

Variable on the heap
 int* foo;

Passing by value (using the stack)
 void bar_val(int a, int b) { }
 Values/objects copied onto the stack

Passing by reference (using the heap)
 void bar_ref(int* a, int* b) { }
 Only a pointer copied (32/64 bits)
 Makes it possible to pass back values

Pointers (Example: Integer value)

KOM – Multimedia Communications Lab 33

Getting the pointer to a variable
 int a = 3;
 int b = 4;
 bar_ref(&a, &b);

Warning: Don’t take the address of a local variable and pass unless

you know what you are doing  the callee might save it until it is
invalid!

Dereferencing a pointer (getting to the actual value)
void bar_ref(int* a, int* b)
{
 *a = *a + *b;
}

Getting addresses and dereferencing pointers

2 b

5 a

Before

2 b

7 a

After

KOM – Multimedia Communications Lab 34

Allocated on the stack
 int array[3];

Array on the heap
 int* array = new int[3];

Deallocate using operator delete[]
 delete[] array;

Mixing up leads to undefined behaviour
 (Also important for calling destructors)

Arrays

KOM – Multimedia Communications Lab 35

Referenced using their first element
 int array[3];
 int *a = &array;
 a points to the first element of array

Also legal
 bar_ref(&array, &array);

Pointer arithmetics
 Pointers behave like ints
 Addition, Subtraction, …
 Evil to operate outside the allocated memory of the array
 No bounds checking

Referencing arrays

1505 a -5123 8

1505 a -5123 8

a + 1 a + 3

?

KOM – Multimedia Communications Lab 36

Strings are just arrays of chars
 char* f = “foobar”;

“foobar” is a 7-element array
 Zero-terminated
 Allows measuring the size in O(n) time

Encoding
 On all common systems, sizeof(char) is 8 bits
 char* can be an UTF8 string
 every ANSI string is also a proper utf8 string
 Commonly used chars encoded in 8 bits
 Uncommon/other languages in several 8-bit blocks
 Best practice: Use UTF8 even on systems that natively have other

representations

Strings

f o o b a r 0 f

KOM – Multimedia Communications Lab 37

„a“
 ANSI: 61 (Hexadecimal)
 UTF 8: 61
 UTF 16: 00 61

„ä“
 ANSI: E4
 UTF 8: C3 A4
 UTF 16: 00 E4

Example UTF8 vs. UTF 16

KOM – Multimedia Communications Lab 38

Offers template-based generic solutions for dynamic memory

Arrays: std::vector
 Adaptive size
  Can’t keep addresses to elements in the vector, as they might be invalid

upon a change in size

Strings: std::string
 Implemented as a std::vector for chars
 Comfortable functions (trim, concatenate, operator+, …)

Game studios tend to avoid these libraries
 Template overhead
 Unpredictable behaviour

STL (Standard Template Library)

KOM – Multimedia Communications Lab 39

Container Insertion Access Erase Find Persistent
Iterators

vector / string
Back: O(1) or
O(n)
Other: O(n)

O(1) Back: O(1)
Other: O(n)

Sorted: O(log n)
Other: O(n) No

deque
Back/Front:
O(1)
Other: O(n)

O(1)
Back/Front:
O(1)
Other: O(n)

Sorted: O(log n)
Other: O(n) Pointers only

list /
forward_list

Back/Front:
O(1)
With iterator:
O(1)
Index: O(n)

Back/Front:
O(1)
With iterator:
O(1)
Index: O(n)

Back/Front:
O(1)
With iterator:
O(1)
Index: O(n)

O(n) Yes

set / map O(log n) - O(log n) O(log n) Yes

unordered_set
/
unordered_ma
p

O(1) or O(n) O(1) or O(n) O(1) or O(n) O(1) or O(n) Pointers only

priority_queue O(log n) O(1) O(log n) - -

STL Complexity Guarantees

Source: http://john-ahlgren.blogspot.de/2013/10/stl-container-
performance.html

KOM – Multimedia Communications Lab 40

Static, Stack and Heap Memory
 Different allocation schemes
 Different level of control for the programmer
 Choose which is the most useful

Pointers
 Allocation on the heap
 Pass by value vs. Pass by reference

Arrays
 Allocation on the heap
 Referenced by pointer to first element

Strings
 Arrays of chars
 Pointer arithmetic
 UTF8 vs. UTF 16

Summary

KOM – Multimedia Communications Lab 41

Side Note: Cracktros

KOM – Multimedia Communications Lab 42

Intro for a cracked game

Used to show off to other

programmers, cracker groups,
…

Often more impressive than the

original game‘s graphics

Later split into the demo scene

Cracktro

KOM – Multimedia Communications Lab 43

Program impressive demos and compete outside of the warez scene

Always at the cutting edge of the hardware
 Use Assembler instead of Basic
 Find ways to exploit the hardware
 Later: Self-restricted demos (e.g. 64K demos)

Demoscene -> Game industry
 E.g. Future Crew -> Remedy

Cracktro -> Demoscene

1988 2010

KOM – Multimedia Communications Lab 44

Scrolling

Moving along a sine wave
 Note: Often used a sine table for efficient computation
 Offset from other characters
 Different amplitudes
 …

Rasterbars
 Use an interrupt to paint lines
 Moving rasterbars along sine wave…

Good example for procedural animation
 Often impossible to store all (animation) data
 Instead, generate complex paths from simple inputs
 Simplest example: Text moving on a sine wave
 Procedural Content Generation
 See video of .kkrieger

Classical demo techniques

KOM – Multimedia Communications Lab 45

Examples from last year

KOM – Multimedia Communications Lab 46

Game Engine

„Game Engine Architecture“
Jason Gregory (Lead Programmer

at Naughty Dog)

Fundamentals
 C++
 3D Math
 Graphics, …

Practical Examples

Part of the „Semesterapparat“
 Fachlesesaal MINT in der ULB

Stadtmitte, 4. Obergeschoss
 Lernzentrum Informatik

Book Recommendations

KOM – Multimedia Communications Lab 47

C++

„Effective C++“
Scott Myers

Performance tips

Pitfalls/Language Details
 Functions a compiler silently adds to classes
 Good use of const, pointers, references

Performance Considerations

Book Recommendations

KOM – Multimedia Communications Lab 48

3D Graphics (next lectures)

„Real-time Rendering“
Tomas Akenine-Möller, Eric

Haines

Very detailed look at graphics

algorithms

Also includes further information,

e.g. intersection tests and
collision detection

Book Recommendations

	Game Technology
	Overview
	Timing
	Timing
	Motion Blur
	Motion Blur algorithm example
	Multithreading
	Multithreading
	Multithreading Problems
	Multithreading - Uses in Games
	Timing
	Virtual frame time
	Virtual Reality Frame Time
	Procedural Animations
	Procedural Animation Example
	Procedural Animation „Mindset“
	Iterative Animations
	Game Loop
	Hidden Game Loop
	Game State
	Game Objects
	Best of both worlds
	Collisions
	Collisions
	Collisions and Timing
	Game logic timing
	Summary
	Memory Management
	Heap Memory
	Heap Memory Examples
	Effects of cache performance
	Pointers (Example: Integer value)
	Getting addresses and dereferencing pointers
	Arrays
	Referencing arrays
	Strings
	Example UTF8 vs. UTF 16
	STL (Standard Template Library)
	STL Complexity Guarantees
	Summary
	Side Note: Cracktros
	Cracktro
	Cracktro -> Demoscene
	Classical demo techniques
	Examples from last year
	Book Recommendations
	Book Recommendations
	Book Recommendations

