
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide
24-Oct-15

Prof. Dr.-Ing. Ralf Steinmetz
KOM - Multimedia Communications Lab

Template all v.3.4
PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology
Lecture 2 – 24.10.2015

Timing & Basic Game Mechanics

Dr.-Ing. Florian Mehm

KOM – Multimedia Communications Lab 2

Timing
 Different timing options
 Animations

Basic Game Mechanics
 Game Loop
 Multithreading
 Collision

C++
 Memory management
 Strings

Overview

KOM – Multimedia Communications Lab 3

Monitors commonly run at 60 Hz
 Games should provide a new frame

every ~16 ms
 Movies (used to) operate at 24 Hz

(40 ms)

Why work harder than that?
 Some people have been shown to be

able to distinguish up to 90 Hz
images
 The frame rate determines how fast

the game can react
 Gamers want speed!
 Virtual Reality
 HTC Vive: 90 Hz
 Oculus Rift: 90 Hz

Timing

KOM – Multimedia Communications Lab 4

„"At Ubisoft for a long time we wanted to push 60 fps. I don't think it was a
good idea because you don't gain that much from 60 fps and it doesn't
look like the real thing. It's a bit like The Hobbit movie, it looked really
weird.” Nicolas Guérin, World Level Design Director, Assassin’s Creed
Unity http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-
s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241

See also “black bars” discussion, e.g. around The Order 1886

Timing

http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241
http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241

KOM – Multimedia Communications Lab 5

In a real camera, the filmed objects
change during a frame

The movements are blurred
 Fast moving objects more
 More the longer the exposure time is

In a virtual camera, without

additional measures, no blurring
is present
 All objects rendered at a perfect

instant in time
 Similar to the missing depth of field

Motion Blur

Source: Wikipedia

KOM – Multimedia Communications Lab 6

Directional blur along a pixel’s velocity
Introduces artifacts for fast-moving objects

Motion Blur algorithm example

Source: http://docs.unity3d.com/Manual/script-CameraMotionBlur.html

KOM – Multimedia Communications Lab 7

Cooperative Multithreading
Often used in games

Returning
 Every (game) object is called
 Carries out its calculations…
 …and returns, saving its state

+ Synchronization easier to
handle
- Can’t use multiple CPU cores

Preemptive Multithreading
 Used in current operating systems

Returning
 Every process is called
 The scheduler takes control back
 State is saved for the process

+ Stalled threads don’t stall the
whole system
- Needs proper synchronization
- Additional costs (saving all state)

Used for whole systems (e.g.
physics)

Multithreading

KOM – Multimedia Communications Lab 8

Cooperative Multithreading
while (true)
{
 DoSomething();
 yield(); // Explicitly return control
 DoAnotherThing();
}

while (true)
{
 DoSomething();
 DoAnotherThing();
}

Preemptive Multithreading

while (true)
{
 // Might be preempted here...
 DoSomething();
 // ...or here...
 DoAnotherThing();
}

Multithreading

KOM – Multimedia Communications Lab 9

Communication between threads

Critical Sections
int a = 5;
if (a == 10)
{
 // Will never happen...
 print("Boo!");
}

Multithreading Problems

KOM – Multimedia Communications Lab 10

Cooperative Multithreading
 E.g. Unity‘s coroutines
 Simple enough to use without preemptive problems, but powerful enough for

many purposes

Preemptive Multithreading
 Most often for larger systems
 For systems which take longer than a frame to compute results, e.g. AI queries
 For systems that run all the time, e.g. physics
 Can make use of multicore systems

Massively parallel execution
 General purpose computation on GPU, Compute Shaders
Will handle this variant when we look at hardware rendering

Multithreading - Uses in Games

KOM – Multimedia Communications Lab 11

Which time to use?

Hardware timers vs. very coarse timers

Timing

Frame n

Terrain.Render() ObjectA.Render() ObjectB.Render()

t_1 t_2 t_3

KOM – Multimedia Communications Lab 12

Calculate a time that is used throughout the frame

Further advantage: Can scale/pause this time

Virtual frame time

Frame n

Terrain.Render() ObjectA.Render() ObjectB.Render()

t_1 = t_frame

t_frame t_frame t_frame

KOM – Multimedia Communications Lab 13

Which head position to use?

Future positions often predicted by HMD
 E.g. using the measured acceleration, physiological models
 Can use timewarp mechanism will look at this in a later lecture

Icon by Hans Gerhard Meier, Noun Project

Virtual Reality Frame Time

Frame n

t_1 t_2 t_3

KOM – Multimedia Communications Lab 14

Calculate the state without information about the previous state
 Based solely on parameters
 Current time
 Configuration parameters
 Usually ranged [0-1]; later scaled to correct amount
 Allows adding/multiplying using sine/exp/…

Example: Simple wind animation of trees

Procedural Animations

KOM – Multimedia Communications Lab 15

Original Source: “The Inner Workings of Fortnite’s Shader Based
Procedural Animation” (Jonathan Lindquist, Epic, GDC Talk)

Effect for “self-building structures”
Composed of several components

See implementation at http://mehm.net/blog/?p=1278

Procedural Animation Example

http://mehm.net/blog/?p=1278
http://mehm.net/blog/?p=1278

KOM – Multimedia Communications Lab 16

Think in procedural terms
 Input: t, e.g. in [0, 1]
 Output: Animated value f(t)

Combination of several effects
 f(t) = g(t) * h(t)
…

Stretching of input parameters
 E.g. for easing

Later in shaders
 Think of equivalence to gradients

Procedural Animation „Mindset“

http://easings.net/

KOM – Multimedia Communications Lab 17

Calculated based on previous states
 Usually not from the beginning of the game
 Instead, use a window of the last frames or a running average
 Often combined with user input
 Used for animations where a “closed” form is not possible or too complicated

Example: Physical animation
 Very simple: Take the position and velocity of the last frame
 Calculate a velocity for the current frame
 Add the velocity to the object

Iterative Animations

KOM – Multimedia Communications Lab 18

Set up windowing system, OS callbacks, initialize libraries/devices, …

Do
 Read data from input devices
 Calculate new game state
 Render frame
 (Wait for Vsync)

While the game is active

Unload libraries, free memory, close window, …

Game Loop

KOM – Multimedia Communications Lab 19

Unity
 Actual game loop implemented in C++
 Components provided by programmers compiled to .net (C#, JS, Boo)
 Update()-functions on all active components are run

Unreal Engine
 Found in UEngine::Tick()
 Scripts provided by users can also be Blueprint

Engine core Scripts and components
 Performance optimizations by the engine provider
 Easier to handle for programmers
 But less adaptable and transparent (Unity)

Hidden Game Loop

KOM – Multimedia Communications Lab 20

Usually handled as Game Object (or similar construct)
 Saves all relevant game state
 Handles relevant input
 Updates state each frame

Component-Based Game Objects
 Separate component for different tasks
 Rendering
 Position
 Input handling
 …
 Avoid object-oriented hierarchies

Game State

GameObject

DynamicObject StaticObject

NPC Player

GameObject

Transform

MeshRenderer

Controller

KOM – Multimedia Communications Lab 21

Hierarchies
+ More behavior defined at
compile-time
+ Explicit inter-object
communication
- (If not restricted): Diamond-

shaped hierarchies/multiple
parents

- Resistant to change

Negative Example
 „Weapons“ and „Tools“
 GDD defines a new weapon
which partly acts like a tool

Components
+ Re-usable behaviors
+ Combinable at runtime
+ Specialization, encapsulation
- Inter-component communication
- E.g. Unity: Performance hits if

other components are searched
each frame

Game Objects

KOM – Multimedia Communications Lab 22

Class hierarchy
 Use power of virtual classes, polymorphism
 Model objects as well as needed

Encapsulate differences with strategy pattern
 Owning class handles everything that is shared between all strategies
 Defers to individual strategies for differing behaviours

Example: Buildings in a RTS-game
 Encapsulating class handles mesh loading, animations, …
 Strategies to handle different behaviours (produced units, …)

Best of both worlds

KOM – Multimedia Communications Lab 23

Intersection
 Objects are overlapping each other
 In reality, objects would deform/break/...
 Unwanted state

Collision
 Objects ideally have only one contact point/edge/face
 Calculate collision response based on this state

Collision Response
 Separate bodies or
 (Stable) contact

Collisions

KOM – Multimedia Communications Lab 24

x times per second
{

For each object
{

Move object
Check for collisions
If (collision detected) move back

}

}

Collisions

KOM – Multimedia Communications Lab 25

Exact collision will almost never happen
 Due to floating point issues and discrete frame time
 Different coping strategies
 Ignore/Keep pushing objects out of each other
 (Smaller time steps)
 Find the exact time when collision happened and step to this time

Collision response for multiple objects
 Often resolved one after the other
 E.g. resolve b-c, then a-c, then a-b
 But in reality, solved all at once

Collisions and Timing

c
b

a

KOM – Multimedia Communications Lab 26

Separate from actual frame rate
 Keep timer for game logic
 Update in periodic time steps
 Rendering done at frame rate

Otherwise, dependent on performance of the hardware

Game logic timing

Source: http://telkomgaming.co.za/old-versus-new-remembering-the-turbo-button/

KOM – Multimedia Communications Lab 27

Timing
 Use a virtual time throughout the frame
 Use smaller ticks for systems such as physics
 Motion Blur
 Multithreading

Animations
 Procedural
 Iterative

Game Loop
 Game state
 Collision detection

Summary

KOM – Multimedia Communications Lab 28

Static Memory
 Global variables
 Handled by the compiler, allocated and de-allocated automatically

Stack Memory
 Semi-automatically handled by the compiler
 Function parameters, local variables, implicit data (e.g. return addresses)

Heap Memory
 All manually allocated memory

Memory Management

KOM – Multimedia Communications Lab 29

Allocated dynamically
 C++ handles nothing for us -> requests memory from the OS
 Can be VERY slow and unreliable

Difference to Java
 Java allocates a large block of memory at the beginning
 Allocates memory to the program during runtime
 Manages this memory
 Can still be slow, e.g. if physical RAM is exhausted
 Garbage Collection

Custom memory management
 Utilize memory access patterns to optimize
 Avoid allocating heap memory altogether in critical sections

Heap Memory

KOM – Multimedia Communications Lab 30

Managing your own memory for often-used structures

Example: Allocate enough memory for all game objects of one type
 Find typical numbers by testing or analysis
 Manage the block by yourself

Stack vs Pool-based
 Stack: Allocating and freeing using one pointer
 Pool: Manage list of free blocks

Keeps data local
 Can be better for cache efficiency

Heap Memory Examples

KOM – Multimedia Communications Lab 31

Source: „Systems Performance: Enterprise and the Cloud”, Brendan
Gregg

Effects of cache performance

KOM – Multimedia Communications Lab 32

Variable on the stack
 int foo;

Variable on the heap
 int* foo;

Passing by value (using the stack)
 void bar_val(int a, int b) { }
 Values/objects copied onto the stack

Passing by reference (using the heap)
 void bar_ref(int* a, int* b) { }
 Only a pointer copied (32/64 bits)
 Makes it possible to pass back values

Pointers (Example: Integer value)

KOM – Multimedia Communications Lab 33

Getting the pointer to a variable
 int a = 3;
 int b = 4;
 bar_ref(&a, &b);

Warning: Don’t take the address of a local variable and pass unless

you know what you are doing the callee might save it until it is
invalid!

Dereferencing a pointer (getting to the actual value)
void bar_ref(int* a, int* b)
{
 *a = *a + *b;
}

Getting addresses and dereferencing pointers

2 b

5 a

Before

2 b

7 a

After

KOM – Multimedia Communications Lab 34

Allocated on the stack
 int array[3];

Array on the heap
 int* array = new int[3];

Deallocate using operator delete[]
 delete[] array;

Mixing up leads to undefined behaviour
 (Also important for calling destructors)

Arrays

KOM – Multimedia Communications Lab 35

Referenced using their first element
 int array[3];
 int *a = &array;
 a points to the first element of array

Also legal
 bar_ref(&array, &array);

Pointer arithmetics
 Pointers behave like ints
 Addition, Subtraction, …
 Evil to operate outside the allocated memory of the array
 No bounds checking

Referencing arrays

1505 a -5123 8

1505 a -5123 8

a + 1 a + 3

?

KOM – Multimedia Communications Lab 36

Strings are just arrays of chars
 char* f = “foobar”;

“foobar” is a 7-element array
 Zero-terminated
 Allows measuring the size in O(n) time

Encoding
 On all common systems, sizeof(char) is 8 bits
 char* can be an UTF8 string
 every ANSI string is also a proper utf8 string
 Commonly used chars encoded in 8 bits
 Uncommon/other languages in several 8-bit blocks
 Best practice: Use UTF8 even on systems that natively have other

representations

Strings

f o o b a r 0 f

KOM – Multimedia Communications Lab 37

„a“
 ANSI: 61 (Hexadecimal)
 UTF 8: 61
 UTF 16: 00 61

„ä“
 ANSI: E4
 UTF 8: C3 A4
 UTF 16: 00 E4

Example UTF8 vs. UTF 16

KOM – Multimedia Communications Lab 38

Offers template-based generic solutions for dynamic memory

Arrays: std::vector
 Adaptive size
 Can’t keep addresses to elements in the vector, as they might be invalid

upon a change in size

Strings: std::string
 Implemented as a std::vector for chars
 Comfortable functions (trim, concatenate, operator+, …)

Game studios tend to avoid these libraries
 Template overhead
 Unpredictable behaviour

STL (Standard Template Library)

KOM – Multimedia Communications Lab 39

Container Insertion Access Erase Find Persistent
Iterators

vector / string
Back: O(1) or
O(n)
Other: O(n)

O(1) Back: O(1)
Other: O(n)

Sorted: O(log n)
Other: O(n) No

deque
Back/Front:
O(1)
Other: O(n)

O(1)
Back/Front:
O(1)
Other: O(n)

Sorted: O(log n)
Other: O(n) Pointers only

list /
forward_list

Back/Front:
O(1)
With iterator:
O(1)
Index: O(n)

Back/Front:
O(1)
With iterator:
O(1)
Index: O(n)

Back/Front:
O(1)
With iterator:
O(1)
Index: O(n)

O(n) Yes

set / map O(log n) - O(log n) O(log n) Yes

unordered_set
/
unordered_ma
p

O(1) or O(n) O(1) or O(n) O(1) or O(n) O(1) or O(n) Pointers only

priority_queue O(log n) O(1) O(log n) - -

STL Complexity Guarantees

Source: http://john-ahlgren.blogspot.de/2013/10/stl-container-
performance.html

KOM – Multimedia Communications Lab 40

Static, Stack and Heap Memory
 Different allocation schemes
 Different level of control for the programmer
 Choose which is the most useful

Pointers
 Allocation on the heap
 Pass by value vs. Pass by reference

Arrays
 Allocation on the heap
 Referenced by pointer to first element

Strings
 Arrays of chars
 Pointer arithmetic
 UTF8 vs. UTF 16

Summary

KOM – Multimedia Communications Lab 41

Side Note: Cracktros

KOM – Multimedia Communications Lab 42

Intro for a cracked game

Used to show off to other

programmers, cracker groups,
…

Often more impressive than the

original game‘s graphics

Later split into the demo scene

Cracktro

KOM – Multimedia Communications Lab 43

Program impressive demos and compete outside of the warez scene

Always at the cutting edge of the hardware
 Use Assembler instead of Basic
 Find ways to exploit the hardware
 Later: Self-restricted demos (e.g. 64K demos)

Demoscene -> Game industry
 E.g. Future Crew -> Remedy

Cracktro -> Demoscene

1988 2010

KOM – Multimedia Communications Lab 44

Scrolling

Moving along a sine wave
 Note: Often used a sine table for efficient computation
 Offset from other characters
 Different amplitudes
 …

Rasterbars
 Use an interrupt to paint lines
 Moving rasterbars along sine wave…

Good example for procedural animation
 Often impossible to store all (animation) data
 Instead, generate complex paths from simple inputs
 Simplest example: Text moving on a sine wave
 Procedural Content Generation
 See video of .kkrieger

Classical demo techniques

KOM – Multimedia Communications Lab 45

Examples from last year

KOM – Multimedia Communications Lab 46

Game Engine

„Game Engine Architecture“
Jason Gregory (Lead Programmer

at Naughty Dog)

Fundamentals
 C++
 3D Math
 Graphics, …

Practical Examples

Part of the „Semesterapparat“
 Fachlesesaal MINT in der ULB

Stadtmitte, 4. Obergeschoss
 Lernzentrum Informatik

Book Recommendations

KOM – Multimedia Communications Lab 47

C++

„Effective C++“
Scott Myers

Performance tips

Pitfalls/Language Details
 Functions a compiler silently adds to classes
 Good use of const, pointers, references

Performance Considerations

Book Recommendations

KOM – Multimedia Communications Lab 48

3D Graphics (next lectures)

„Real-time Rendering“
Tomas Akenine-Möller, Eric

Haines

Very detailed look at graphics

algorithms

Also includes further information,

e.g. intersection tests and
collision detection

Book Recommendations

	Game Technology
	Overview
	Timing
	Timing
	Motion Blur
	Motion Blur algorithm example
	Multithreading
	Multithreading
	Multithreading Problems
	Multithreading - Uses in Games
	Timing
	Virtual frame time
	Virtual Reality Frame Time
	Procedural Animations
	Procedural Animation Example
	Procedural Animation „Mindset“
	Iterative Animations
	Game Loop
	Hidden Game Loop
	Game State
	Game Objects
	Best of both worlds
	Collisions
	Collisions
	Collisions and Timing
	Game logic timing
	Summary
	Memory Management
	Heap Memory
	Heap Memory Examples
	Effects of cache performance
	Pointers (Example: Integer value)
	Getting addresses and dereferencing pointers
	Arrays
	Referencing arrays
	Strings
	Example UTF8 vs. UTF 16
	STL (Standard Template Library)
	STL Complexity Guarantees
	Summary
	Side Note: Cracktros
	Cracktro
	Cracktro -> Demoscene
	Classical demo techniques
	Examples from last year
	Book Recommendations
	Book Recommendations
	Book Recommendations

