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Timing 
 Different timing options 
 Animations 

 
Basic Game Mechanics 
 Game Loop 
 Multithreading 
 Collision 

 
C++ 
 Memory management 
 Strings 

 
 

Overview 
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Monitors commonly run at 60 Hz 
 Games should provide a new frame 

every ~16 ms 
 Movies (used to) operate at 24 Hz 

(40 ms) 
 

Why work harder than that? 
 Some people have been shown to be 

able to distinguish up to 90 Hz 
images 
 The frame rate determines how fast 

the game can react 
 Gamers want speed! 
 Virtual Reality 
 HTC Vive: 90 Hz 
 Oculus Rift: 90 Hz 
 

  
 

Timing 
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„"At Ubisoft for a long time we wanted to push 60 fps. I don't think it was a 
good idea because you don't gain that much from 60 fps and it doesn't 
look like the real thing. It's a bit like The Hobbit movie, it looked really 
weird.” Nicolas Guérin, World Level Design Director, Assassin’s Creed 
Unity http://www.techradar.com/news/gaming/viva-la-resoluci-n-assassin-
s-creed-dev-thinks-industry-is-dropping-60-fps-standard-1268241 

 
 
 
 
 
 
See also “black bars” discussion, e.g. around The Order 1886 

 
 

Timing 
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In a real camera, the filmed objects 
change during a frame 

The movements are blurred 
 Fast moving objects more 
 More the longer the exposure time is 

 
 
In a virtual camera, without 

additional measures, no blurring 
is present 
 All objects rendered at a perfect 

instant in time 
 Similar to the missing depth of field 

 
 
 
 

 
 

Motion Blur 

Source: Wikipedia 
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Directional blur along a pixel’s velocity 
Introduces artifacts for fast-moving objects 

 
 

Motion Blur algorithm example 

Source: http://docs.unity3d.com/Manual/script-CameraMotionBlur.html 
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Cooperative Multithreading 
Often used in games 
 

Returning 
 Every (game) object is called 
 Carries out its calculations… 
 …and returns, saving its state 
 

+ Synchronization easier to 
handle 
- Can’t use multiple CPU cores 

Preemptive Multithreading 
 Used in current operating systems 

 
Returning 
 Every process is called 
 The scheduler takes control back 
 State is saved for the process 
 

+ Stalled threads don’t stall the 
whole system 
- Needs proper synchronization 
- Additional costs (saving all state) 

 
Used for whole systems (e.g. 
physics) 

 
 

 
 
 

Multithreading 
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Cooperative Multithreading 
while (true) 
{ 
 DoSomething(); 
 yield(); // Explicitly return control 
 DoAnotherThing(); 
} 
 
while (true) 
{ 
 DoSomething(); 
 DoAnotherThing(); 
} 
 

Preemptive Multithreading 
 
while (true) 
{ 
 // Might be preempted here... 
 DoSomething();  
 // ...or here... 
 DoAnotherThing(); 
} 
 

 
 

Multithreading 
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Communication between threads 
 
Critical Sections 
int a = 5; 
if (a == 10) 
{ 
 // Will never happen... 
 print("Boo!"); 
} 
 
 

 
 

Multithreading Problems 
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Cooperative Multithreading 
 E.g. Unity‘s coroutines 
 Simple enough to use without preemptive problems, but powerful enough for 

many purposes 
 

Preemptive Multithreading 
 Most often for larger systems 
 For systems which take longer than a frame to compute results, e.g. AI queries 
 For systems that run all the time, e.g. physics 
 Can make use of multicore systems 

 
Massively parallel execution 
 General purpose computation on GPU, Compute Shaders 
Will handle this variant when we look at hardware rendering 

 
 

Multithreading - Uses in Games 
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Which time to use? 
 
 
 
 
 
 
 
 
 
Hardware timers vs. very coarse timers 
 

 
 

Timing 

Frame n 

Terrain.Render() ObjectA.Render() ObjectB.Render() 

t_1 t_2 t_3 
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Calculate a time that is used throughout the frame 
 
 
 
 
 
 
 
Further advantage: Can scale/pause this time 

 

 
 

Virtual frame time 

Frame n 

Terrain.Render() ObjectA.Render() ObjectB.Render() 

t_1 = t_frame 

t_frame t_frame t_frame 
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Which head position to use? 
 
 
 
 
 
 
 
 
Future positions often predicted by HMD 
 E.g. using the measured acceleration, physiological models 
 Can use timewarp mechanism  will look at this in a later lecture 

Icon by Hans Gerhard Meier, Noun Project 
 

Virtual Reality Frame Time 

Frame n 

t_1 t_2 t_3 
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Calculate the state without information about the previous state 
 Based solely on parameters 
 Current time 
 Configuration parameters 
 Usually ranged [0-1]; later scaled to correct amount 
 Allows adding/multiplying using sine/exp/… 

 
Example: Simple wind animation of trees 

 
 

Procedural Animations 
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Original Source: “The Inner Workings of Fortnite’s Shader Based 
Procedural Animation” (Jonathan Lindquist, Epic, GDC Talk) 

 
Effect for “self-building structures” 
Composed of several components 
 
 
 
 
 
 
 
See implementation at http://mehm.net/blog/?p=1278 
 

 
 

Procedural Animation Example 

http://mehm.net/blog/?p=1278
http://mehm.net/blog/?p=1278
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Think in procedural terms 
  Input: t, e.g. in [0, 1] 
  Output: Animated value f(t) 

 
Combination of several effects 
 f(t) = g(t) * h(t) 
… 

 
Stretching of input parameters 
 E.g. for easing 

 
Later in shaders 
 Think of equivalence to gradients 

 
 

Procedural Animation „Mindset“ 

http://easings.net/ 
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Calculated based on previous states 
 Usually not from the beginning of the game 
 Instead, use a window of the last frames or a running average 
 Often combined with user input 
 Used for animations where a “closed” form is not possible or too complicated 

 
Example: Physical animation 
 Very simple: Take the position and velocity of the last frame 
 Calculate a velocity for the current frame 
 Add the velocity to the object 

 
 
 
 
 
 

 
 

Iterative Animations 
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Set up windowing system, OS callbacks, initialize libraries/devices, … 
 
Do 
 Read data from input devices 
 Calculate new game state 
 Render frame 
 (Wait for Vsync) 

While the game is active 
 
Unload libraries, free memory, close window, … 

 
 

Game Loop 
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Unity 
 Actual game loop implemented in C++ 
 Components provided by programmers compiled to .net (C#, JS, Boo) 
 Update()-functions on all active components are run 

 
Unreal Engine 
 Found in UEngine::Tick() 
 Scripts provided by users can also be Blueprint 

 
Engine core  Scripts and components 
 Performance optimizations by the engine provider 
 Easier to handle for programmers 
 But less adaptable and transparent ( Unity) 

 
 

Hidden Game Loop 
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Usually handled as Game Object (or similar construct) 
 Saves all relevant game state 
 Handles relevant input 
 Updates state each frame 

 
 
 
Component-Based Game Objects 
 Separate component for different tasks 
 Rendering 
 Position 
 Input handling 
 … 
 Avoid object-oriented hierarchies 

 
 

Game State 

GameObject 

DynamicObject StaticObject 

NPC Player 

GameObject 

Transform 

MeshRenderer 

Controller 
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Hierarchies 
+ More behavior defined at 
compile-time 
+ Explicit inter-object 
communication 
- (If not restricted): Diamond-

shaped hierarchies/multiple 
parents 

- Resistant to change 
 

Negative Example 
 „Weapons“ and „Tools“ 
 GDD defines a new weapon 
which partly acts like a tool 

 

Components 
+ Re-usable behaviors 
+ Combinable at runtime 
+ Specialization, encapsulation 
- Inter-component communication 
- E.g. Unity: Performance hits if 

other components are searched 
each frame 

 

 
 

Game Objects 
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Class hierarchy 
 Use power of virtual classes, polymorphism 
 Model objects as well as needed 

 
Encapsulate differences with strategy pattern 
 Owning class handles everything that is shared between all strategies 
 Defers to individual strategies for differing behaviours 
 

Example: Buildings in a RTS-game 
 Encapsulating class handles mesh loading, animations, … 
 Strategies to handle different behaviours (produced units, …) 

 
 

Best of both worlds 
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Intersection 
 Objects are overlapping each other 
 In reality, objects would deform/break/... 
 Unwanted state 

 
Collision 
 Objects ideally have only one contact point/edge/face 
 Calculate collision response based on this state 

 
Collision Response 
 Separate bodies or 
 (Stable) contact 

 
 

Collisions 
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x times per second 
{ 

For each object 
{ 

Move object 
Check for collisions 
If (collision detected) move back 

} 

} 
 

 
 

Collisions 
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Exact collision will almost never happen 
 Due to floating point issues and discrete frame time 
 Different coping strategies 
 Ignore/Keep pushing objects out of each other 
 (Smaller time steps) 
 Find the exact time when collision happened and step to this time 

 
Collision response for multiple objects 
 Often resolved one after the other 
 E.g. resolve b-c, then a-c, then a-b 
 But in reality, solved all at once 

 

 
 

Collisions and Timing 

c 
b 

a 
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Separate from actual frame rate 
 Keep timer for game logic 
 Update in periodic time steps 
 Rendering done at frame rate 

 
Otherwise, dependent on performance of the hardware 
 
 

 

 
 

Game logic timing 

Source: http://telkomgaming.co.za/old-versus-new-remembering-the-turbo-button/ 



KOM – Multimedia Communications Lab   27 
 

Timing 
 Use a virtual time throughout the frame 
 Use smaller ticks for systems such as physics 
 Motion Blur 
 Multithreading 

 
Animations 
 Procedural 
 Iterative 

 
Game Loop 
 Game state 
 Collision detection 

 
 
 

 
 

 
 

 
 

Summary 
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Static Memory 
 Global variables 
 Handled by the compiler, allocated and de-allocated automatically 
 

Stack Memory 
 Semi-automatically handled by the compiler 
 Function parameters, local variables, implicit data (e.g. return addresses) 

 
Heap Memory 
 All manually allocated memory 
 

 
 

Memory Management 
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Allocated dynamically 
 C++ handles nothing for us -> requests memory from the OS 
 Can be VERY slow and unreliable 

 
Difference to Java 
 Java allocates a large block of memory at the beginning 
 Allocates memory to the program during runtime 
 Manages this memory 
  Can still be slow, e.g. if physical RAM is exhausted 
 Garbage Collection 

 
Custom memory management 
 Utilize memory access patterns to optimize 
 Avoid allocating heap memory altogether in critical sections 

 
 
 

 
 

Heap Memory 
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Managing your own memory for often-used structures 
 
Example: Allocate enough memory for all game objects of one type 
 Find typical numbers by testing or analysis 
 Manage the block by yourself 

 
Stack vs Pool-based 
 Stack: Allocating and freeing using one pointer 
 Pool: Manage list of free blocks 

 
Keeps data local 
 Can be better for cache efficiency 

 
 

Heap Memory Examples 
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Source: „Systems Performance: Enterprise and the Cloud”, Brendan 
Gregg 

 
 

Effects of cache performance 
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Variable on the stack 
 int foo; 

 
Variable on the heap 
 int* foo; 

 
Passing by value (using the stack) 
 void bar_val(int a, int b) { } 
 Values/objects copied onto the stack 

 
Passing by reference (using the heap) 
 void bar_ref(int* a, int* b) { } 
 Only a pointer copied (32/64 bits) 
 Makes it possible to pass back values 

 
 

Pointers (Example: Integer value) 
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Getting the pointer to a variable 
 int a = 3; 
 int b = 4; 
 bar_ref(&a, &b); 

 
Warning: Don’t take the address of a local variable and pass unless 

you know what you are doing  the callee might save it until it is 
invalid! 

 
Dereferencing a pointer (getting to the actual value) 
void bar_ref(int* a, int* b)  
{ 
 *a = *a + *b; 
} 

 
 

Getting addresses and dereferencing pointers 

2 b 

5 a 

Before 

2 b 

7 a 

After 
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Allocated on the stack 
 int array[3]; 

 
Array on the heap 
 int* array = new int[3]; 

 
Deallocate using operator delete[] 
 delete[] array; 

 
Mixing up leads to undefined behaviour 
 (Also important for calling destructors) 

 
 

Arrays 
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Referenced using their first element 
 int array[3]; 
 int *a = &array; 
 a points to the first element of array 
 

Also legal 
 bar_ref(&array, &array); 

 
Pointer arithmetics 
 Pointers behave like ints 
 Addition, Subtraction, … 
 Evil to operate outside the allocated memory of the array 
 No bounds checking 

 
 

Referencing arrays 

1505 a -5123 8 

1505 a -5123 8 

a + 1 a + 3 

? 



KOM – Multimedia Communications Lab   36 
 

Strings are just arrays of chars 
 char* f = “foobar”; 

 
“foobar” is a 7-element array 
 Zero-terminated 
 Allows measuring the size in O(n) time 

 
Encoding 
 On all common systems, sizeof(char) is 8 bits 
 char* can be an UTF8 string 
 every ANSI string is also a proper utf8 string 
 Commonly used chars encoded in 8 bits 
 Uncommon/other languages in several 8-bit blocks 
 Best practice: Use UTF8 even on systems that natively have other 

representations 
  

 

Strings 

f o o b a r 0 f 
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„a“ 
 ANSI: 61 (Hexadecimal) 
 UTF 8: 61 
 UTF 16: 00 61 

 
„ä“ 
 ANSI: E4 
 UTF 8: C3 A4 
 UTF 16: 00 E4 

 
 

Example UTF8 vs. UTF 16 
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Offers template-based generic solutions for dynamic memory 
 
Arrays: std::vector 
 Adaptive size 
  Can’t keep addresses to elements in the vector, as they might be invalid 

upon a change in size 
 
Strings: std::string 
 Implemented as a std::vector for chars 
 Comfortable functions (trim, concatenate, operator+, …) 

 
Game studios tend to avoid these libraries 
 Template overhead 
 Unpredictable behaviour 

 
 
 

STL (Standard Template Library) 



KOM – Multimedia Communications Lab   39 
 

Container Insertion Access Erase Find Persistent 
Iterators 

vector / string 
Back: O(1) or 
O(n) 
Other: O(n) 

O(1) Back: O(1) 
Other: O(n) 

Sorted: O(log n) 
Other: O(n) No 

deque 
Back/Front: 
O(1) 
Other: O(n) 

O(1) 
Back/Front: 
O(1) 
Other: O(n) 

Sorted: O(log n) 
Other: O(n) Pointers only 

list / 
forward_list 

Back/Front: 
O(1) 
With iterator: 
O(1) 
Index: O(n) 

Back/Front: 
O(1) 
With iterator: 
O(1) 
Index: O(n) 

Back/Front: 
O(1) 
With iterator: 
O(1) 
Index: O(n) 

O(n) Yes 

set / map O(log n) - O(log n) O(log n) Yes 

unordered_set 
/ 
unordered_ma
p 

O(1) or O(n) O(1) or O(n) O(1) or O(n) O(1) or O(n) Pointers only 

priority_queue O(log n) O(1) O(log n) - - 

 
 

STL Complexity Guarantees 

Source: http://john-ahlgren.blogspot.de/2013/10/stl-container-
performance.html 



KOM – Multimedia Communications Lab   40 
 

Static, Stack and Heap Memory 
 Different allocation schemes 
 Different level of control for the programmer 
 Choose which is the most useful 

 
Pointers 
 Allocation on the heap 
 Pass by value vs. Pass by reference 

 
Arrays 
 Allocation on the heap 
 Referenced by pointer to first element 

 
Strings 
 Arrays of chars 
 Pointer arithmetic 
 UTF8 vs. UTF 16 

 
 

Summary 
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Side Note: Cracktros 
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Intro for a cracked game 
 
Used to show off to other 

programmers, cracker groups, 
… 

 
Often more impressive than the 

original game‘s graphics 
 
Later split into the demo scene 
 
 

 
 

Cracktro 
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Program impressive demos and compete outside of the warez scene 
 
Always at the cutting edge of the hardware 
 Use Assembler instead of Basic 
 Find ways to exploit the hardware 
 Later: Self-restricted demos (e.g. 64K demos) 

 
Demoscene -> Game industry 
 E.g. Future Crew -> Remedy 

 
 

 
 

Cracktro -> Demoscene 

1988 2010 
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Scrolling 
 
Moving along a sine wave 
 Note: Often used a sine table for efficient computation 
 Offset from other characters 
 Different amplitudes 
 … 

 
Rasterbars 
 Use an interrupt to paint lines 
 Moving rasterbars along sine wave… 

 
Good example for procedural animation 
 Often impossible to store all (animation) data 
 Instead, generate complex paths from simple inputs 
 Simplest example: Text moving on a sine wave 
 Procedural Content Generation 
 See video of .kkrieger 

 
 

Classical demo techniques 
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Examples from last year 
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Game Engine 
 
„Game Engine Architecture“ 
Jason Gregory (Lead Programmer 

at Naughty Dog) 
 
Fundamentals 
 C++ 
 3D Math 
 Graphics, … 

 
Practical Examples 
 
Part of the „Semesterapparat“ 
 Fachlesesaal MINT in der ULB 

Stadtmitte, 4. Obergeschoss 
 Lernzentrum Informatik 

 
 
 

Book Recommendations 
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C++ 
 
„Effective C++“ 
Scott Myers 
 
Performance tips 
 
Pitfalls/Language Details 
 Functions a compiler silently adds to classes 
 Good use of const, pointers, references 

 
Performance Considerations 

 
 

Book Recommendations 
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3D Graphics (next lectures) 
 
„Real-time Rendering“ 
Tomas Akenine-Möller, Eric 

Haines 
 
Very detailed look at graphics 

algorithms 
 
Also includes further information, 

e.g. intersection tests and 
collision detection 

 
 

Book Recommendations 
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