
© author(s) of these slides including research results from the KOM research network and TU Darmstadt; otherwise it is specified at the respective slide

27-Nov-15

Prof. Dr.-Ing. Ralf Steinmetz

KOM - Multimedia Communications Lab

Template all v.3.4

PPT-for-all___v.3.4_office2010___2012.09.10.pptx

Game Technology

Lecture 5 – 28.11.2015

Hardware Rendering

Dr.-Ing. Florian Mehm

KOM – Multimedia Communications Lab 2

Organization

Date Lecture Topic

24.10.2015 1 Input and Output

2 The Game Loop

3 Software Rendering

4 Advanced Software Rendering

28.11.2015 5 Basic Hardware Rendering

6 Bumps and Animations

7 Physically Based Rendering

8 Physics 1

19.12.2015 9 Physics 2

10 Procedural Content Generation

11 Compression and Streaming

12 Multiplayer

23.1.2016 13 Audio

14 Artificial Intelligence

15 Scripting

KOM – Multimedia Communications Lab 3

Lecture recordings

 Available on the wiki: https://wiki.ktxsoftware.com

Exercises from last block

 Exercise 1 corrected

 Will be uploaded to your git repository

 Groups which uploaded incorrectly were informed

New exercises

 3 exercises until next block

Organization

https://wiki.ktxsoftware.com/

KOM – Multimedia Communications Lab 4

Next block: 19.12.2015

 Sorry about the date!

 Recordings will be available soon after the block

 No exercise scheduled for winter break (but will respond to feedback during the

break if you want to work)

Organization

KOM – Multimedia Communications Lab 5

Game Jams

 Game development contest

 Vague theme (e.g. “10 seconds”)

 Tight time constraints (e.g. 48 h)

 Starting from scratch (design, assets, code, …)

 No excuses – just submit something…

Ludum Dare 34@TUD

 Sa., 12.12.2015, 9:00 –

Mo., 14.12.2015 (night)

 Registration (first-come-first-serve):

gamejam@kom.tu-darmstadt.de

Ludum Dare@KOM

10 Seconds to Apocalypse, 2013

10Up Experiments: Mountain Brew, 2014
10sion, 2013

The Most Important 10 Seconds Of Your Life, 2013

A Maze Thing, 2013

Ludum Dare 30 @ TUD, 2014

As We Are, 2014

The Head Wizards Course, 2014

Neon Multiverse, 2014

KOM – Multimedia Communications Lab 6

KOM – Multimedia Communications Lab 7

KOM – Multimedia Communications Lab 8

KOM – Multimedia Communications Lab 9

KOM – Multimedia Communications Lab 10

KOM – Multimedia Communications Lab 11

Pong & Computer Space

Pong (1972), Computer Space (1971)

KOM – Multimedia Communications Lab 12

Pong “Game Engine”

Pong (1972), Clock Generator

KOM – Multimedia Communications Lab 13

Apple 2 (1977)

KOM – Multimedia Communications Lab 14

One of the first mass-produced

home computer with CG

capabilities

 Quirky hardware and software

interface

 But: Gave rise to first home graphical

games

Apple II

Mystery House (1980)

KOM – Multimedia Communications Lab 15

Apple II Graphics

KOM – Multimedia Communications Lab 16

Apple II Graphics (Low-res mode)

KOM – Multimedia Communications Lab 17

Atari VCS (1977)

KOM – Multimedia Communications Lab 18

Later renamed to Atari 2600

MOS Technologies 6507

 Variant of 6502: Addressable
memory reduce from 64 kB to 8 kB

 ~1,19 MHz

Developers had to be very
creative

 E.g. build mirrored levels

 Use the timing of the monitor to
switch colors in one frame

 Use undocumented features

More info: “Racing the Beam:
The Atari Video Computer
System”

Atari VCS

Adventure (1979)

KOM – Multimedia Communications Lab 19

Nintendo Entertainment System/Famicom

(1983)

KOM – Multimedia Communications Lab 20

CPU: Ricoh 2A03 (6502-base) @ 1,77 MHz (PAL) / 1,79 MHz (NTSC)

Graphics: PPU Ricoh-Chip (NTSC: RP2C02, PAL: RP2C07) @ 5,37

MHz bzw. 5,32 MHz

CPU: Not much difference to VCS

 But built for better handling of sprite, tiled rendering

Nintendo Entertainment System/Famicom

KOM – Multimedia Communications Lab 21

Sprite flickering

 Emulated in Mega Man 9 (2008)

 Happened when too many sprites

were being drawn

Limited memory

 Intended for tiled backgrounds

 Sprites only small elements

 Mega Man boss fights: Black

background for memory reasons

NES quirks

Mega Man 2 (1988)

KOM – Multimedia Communications Lab 22

NES Quirks

https://www.youtube.com/watch?feature=player_embedded&v=JrH5Q8gssvY

KOM – Multimedia Communications Lab 23

Commodore 64 (1982)

KOM – Multimedia Communications Lab 24

Amiga 500 (1987)

KOM – Multimedia Communications Lab 25

Origin (Complex), 1993

https://www.youtube.com/watch?v=MeoFaHW3nvw

KOM – Multimedia Communications Lab 26

IBM PC (1981)

KOM – Multimedia Communications Lab 27

Voodoo Graphics (1996)

KOM – Multimedia Communications Lab 28

Triangle raster engine

Linearly interpolated Gouraud-shaded rendering

Perspective-corrected (divide-per-pixel) texture-mapped rendering

with iterated RGB modulation/addition

Detail and Projected Texture mapping

Linearly interpolated 16-bit Z-buffer rendering

Perspective-corrected 16-bit floating point W-buffer rendering (patent

pending)

Texture filtering: point-sampling, bilinear, and trilinear filtering with

mipmapping

…

Features of Voodo Graphics chip

KOM – Multimedia Communications Lab 29

Modern intel CPUs

KOM – Multimedia Communications Lab 30

Windows Vista (2007)

KOM – Multimedia Communications Lab 31

PS4

KOM – Multimedia Communications Lab 32

CPU

 Run sequential code as fast as possible

GPU (Graphical Processing Unit)

 Massively parallel code execution

 Plus triangle rasterizer

 Plus texture sampler

GPGPU (General purpose computations on GPU)

 Programmable computing units, not directly tied to graphics anymore

 Carry out a computation massively parallelized

CPU vs GPU

KOM – Multimedia Communications Lab 33

http://www.gdcvault.com/play/102

2421/Ubisoft-Cloth-Simulation-

Performance-Postmortem

Ideally suited for parallel tasks

 Adding many large vectors

 …

What if there are dependencies?

 Throw away some results

 Organize data better

 ...

GPGPU

http://www.gdcvault.com/play/1022421/Ubisoft-Cloth-Simulation-Performance-Postmortem

KOM – Multimedia Communications Lab 34

https://www.coursera.org/course/hetero

MOOC course “Heterogeneous Parallel Programming”

University of Illinois

GPGPU

https://www.coursera.org/course/hetero

KOM – Multimedia Communications Lab 35

Triangles

KOM – Multimedia Communications Lab 36

Aliasing

KOM – Multimedia Communications Lab 37

Sampling frequency is too low

 Example: Original wave on the left

 Sample points in the middle

 Inaccurate sampled wave on the right

Aliasing

KOM – Multimedia Communications Lab 38

Specifically work on edges

Blur with the background

Would require back-to-front rendering

Edge Antialiasing

KOM – Multimedia Communications Lab 39

Supersample Antialiasing

KOM – Multimedia Communications Lab 40

Multisample Antialiasing

https://www.youtube.com/watch?v=Nef6yWYu0-I

KOM – Multimedia Communications Lab 41

Postprocess Antialiasing

KOM – Multimedia Communications Lab 42

Temporal Anti-Aliasing

Anti-Aliasing done over several frames, to remove effects seen during

motion

KOM – Multimedia Communications Lab 43

Basically images

Preferably 2n * 2n

 Other sizes not necessarily supported

 Expand image and fix up texture coordinates

Textures

KOM – Multimedia Communications Lab 44

Point Filtering

Bilinear Filtering

 Interpolate four neighbouring pixels

Texture Sampling

KOM – Multimedia Communications Lab 45

Bilinear filtering

KOM – Multimedia Communications Lab 46

Example: Texture mapped to one pixel

 Ideally calculate mean color value of the complete texture

Trick: Precompute images

 Width / 2, Height / 2

 Width / 4, Height / 4

 …

 Sample from best fitting image

(multum in parvo, „much in little)

Mip Mapping

KOM – Multimedia Communications Lab 47

No mip mapping

KOM – Multimedia Communications Lab 48

MIP Mapping

KOM – Multimedia Communications Lab 49

Seams between mip levels are often visible

 Trilinear filtering

Perspective stretches images differently in x and y

 No optimal mip level

Mip Mapping

KOM – Multimedia Communications Lab 50

Anisotropic Filtering

KOM – Multimedia Communications Lab 51

Anisotropic filtering

KOM – Multimedia Communications Lab 52

Implemented in hardware

Used automatically by the rasterizer

3D APIs offer simple configuration

 Off, allow only smaller values, allow only larger values

Depth Buffer

KOM – Multimedia Communications Lab 53

Critical for performance

 Reads in previous pixels, stresses memory interface

 Makes parallel execution more difficult

Fixed modes

 1 * new pixel + 0 * old pixel

 source alpha * new pixel + (1 - source alpha) * old pixel

 …

 (destination alpha is rarely used)

Alpha-Blending

KOM – Multimedia Communications Lab 54

Render to texture

Draw rendered texture

Draw blended geometry

 Use rendered texture as input

Much slower

Programmable Blending

KOM – Multimedia Communications Lab 55

Standard blending

 source alpha * new pixel + (1 - source alpha) * old pixel

Additive blending

 source alpha * new pixel + old pixel

Most used blending modes

KOM – Multimedia Communications Lab 56

Bilinear filtering samples rgb + alpha

At alpha borders samples rgb values with alpha 0

Texture Sampling and Transparency

KOM – Multimedia Communications Lab 57

Multiply rgb with alpha

Fixes texture sampling (invisible pixels are multiplied with 0)

Fixes sunglasses

 Premultiply alpha, then add something

 Combines standard and additive blending

Blending mode:

 new pixel + (1 - source alpha) * old pixel

Premultiplied Alpha

KOM – Multimedia Communications Lab 58

Calculates vertex transformations

Prepares additional data for later shader stages

 What we did in Exercise 3

Vertex Shader

KOM – Multimedia Communications Lab 59

Also referred to as Pixel Shader

Uses interpolated data from vertex shader

Calculates colors

 What we did in Exercise 4

Fragment Shader

KOM – Multimedia Communications Lab 60

Array of vertices

Can hold additional data per vertex

 E.g normal, animation data, ...

Has to assign additional data to names or registers for vertex shader

Primary interface from CPU to GPU

Vertex Buffer

KOM – Multimedia Communications Lab 61

Array of indices

That‘s it

 One vertex can be re-used in several triangles

Index Buffer

KOM – Multimedia Communications Lab 62

Set Vertex Shader

Set Fragment Shader

Set IndexBuffer

Set Vertex Buffer

DrawIndexedTriangles()

DrawIndexedTriangles()

…

Draw Calls

KOM – Multimedia Communications Lab 63

Create command buffers

Verify data

(compile shaders)

…

Implicit Work

KOM – Multimedia Communications Lab 64

No Rasterization

Additional options for data synchronization

Not yet supported everywhere

Many competing languages

 Even OpenCL and GLSL compute shaders

Compute Shader GPGPU

KOM – Multimedia Communications Lab 65

Xeon Phi

 Ex project Larrabee

• https://code.google.com/p/cudaraster/

• From nVidia

Triangles on Compute

https://code.google.com/p/cudaraster/

KOM – Multimedia Communications Lab 66

Geometry Shader

 Works on complete triangles

Tesselation Shader

 Can create new triangles

Not yet supported on all hardware

 Notably no support on iOS

More Shaders

KOM – Multimedia Communications Lab 67

color = ambient + diffuse + specular

 Note: Light from different sources can always be added just like that

Phong Lighting

KOM – Multimedia Communications Lab 68

Ambient = Constant

KOM – Multimedia Communications Lab 69

Diffuse

KOM – Multimedia Communications Lab 70

diffuse = LN (see previous lecture)

Diffuse

KOM – Multimedia Communications Lab 71

Specular

KOM – Multimedia Communications Lab 72

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 𝑹 ∙ 𝑽
𝐧

R: mirrored vector to the light source (reflectance vector)

V: vector to the camera

n: roughness – start at 32 and tune

Empirical model (aka basically nonsense)

Ugly for larger angles (cos 0)

(H: Half-vector between V and L)

(N: Normal)

Specular

KOM – Multimedia Communications Lab 73

𝑯 =
𝑽 + 𝑳

𝑽 + 𝑳

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓𝒄𝒐𝒔
𝒏𝜽′

𝑰𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 = 𝑰𝒊𝒏𝒌𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 ∙
(𝑽 + 𝑳) ∙ 𝑵

(𝑽 + 𝑳) ∙ 𝑵

A little faster

A little nicer

Blinn Phong

KOM – Multimedia Communications Lab 74

Real ambient light is hard

 Light bouncing and bouncing and bouncing…

Ambient light tends to look very diffuse

 No hard borders

Precompute everything

 Put it in small textures

 Bilinear filtering blurry stuff works wonderfully

Better ambient light

KOM – Multimedia Communications Lab 75

Light Baking

Quake (1996)

KOM – Multimedia Communications Lab 76

Render six orthogonal perspectives into a cube map

 Camera center = center of object to be rendered

Sample vector into cubemap for every pixel

Obviously very expensive

Can not be precomputed

Better specular lighting

KOM – Multimedia Communications Lab 77

Thinking of „Ambient“ is only an approximation

 Phong lighting is an approximation of an approximation

Light bounces around

 First bounce direct lighting (use diffuse and specular)

 Second bounce hard shadows

 More bounces ambient light

Ambient, Diffuse…

KOM – Multimedia Communications Lab 78

Set camera to light source

Render depth each pixel value = distance from light

During regular rendering

Transform vertices two times

 Using camera position

 Using light position z = distance from light

Read depth texture

Compare depth calculated using light pos and depth from texture

 If greater in shadow

Shadow Mapping

KOM – Multimedia Communications Lab 79

Shadow Mapping

KOM – Multimedia Communications Lab 80

Shadow Mapping Problems

KOM – Multimedia Communications Lab 81

Cascaded Shadow Maps

KOM – Multimedia Communications Lab 82

What work can the GPU assist us with?

 Highly parallel calculations:

 Graphics (each pixel, each vertex, ...)

 General purpose tasks that can be parallelized

 Graphics-related tasks

 Rasterization

 Texture lookups/filtering

Techniques

 Antialiasing

 Mip-mapping

 ...

Now: How to program this?

Summary

KOM – Multimedia Communications Lab 83

OpenGL Shading Language

Added to OpenGL in 2004 with OpenGL 2.0

Version 1.10

Similar to C

Semiautomatic parallelization

GLSL

KOM – Multimedia Communications Lab 84

uniform sampler2D tex;

varying vec2 texCoord;

varying vec4 color;

void kore() {

vec4 texcolor = texture2D(tex, texCoord) * color;

texcolor.rgb *= color.a;

gl_FragColor = texcolor;

}

GLSL Example

KOM – Multimedia Communications Lab 85

Kore and especially Kha are intended for cross-platform usage

Challenge 1: GSLS versions, capabilities

 Widest coverage: OpenGL ES Shading Language

 WebGL: Based on OpenGL ES

 Supported across mobile devices

 Supported on desktop devices

Challenge 2: Different shader languages

 E.g. on Windows: DirectX, HLSL

 Apple devices: Metal

 Cross-compiler krafix

Kore/Kha specialties

KOM – Multimedia Communications Lab 86

Transforms vertices

Writes transformed vertex to special var

 gl_Position

Can write additional data

Vertex Shader

KOM – Multimedia Communications Lab 87

Writes final color to special var

 gl_FragColor

Can not write additional data

 Mostly (multi target rendering, gl_FragDepth,… - not on all hardware)

Fragment Shader

KOM – Multimedia Communications Lab 88

Vertex shader defines one function..

 ...which is applied to lots of vertices in parallel

Fragment shader defines one function...

 ...which is applied to lots of pixels in parallel

Programming model allows hardware to parallelize automatically

 To multiple compute cores, SIMD units or weird combinations of both

Parallelism

KOM – Multimedia Communications Lab 89

Constants

 Do not change while shader executes

 Can be changed between draw calls

uniform mat4 projectionMatrix;

uniform sampler2D tex;

Uniforms

KOM – Multimedia Communications Lab 90

Vertex shader input

Defined in Vertex Buffer

attribute vec3 vertexPosition;

attribute vec2 texPosition;

attribute vec4 vertexColor;

Attributes

KOM – Multimedia Communications Lab 91

Transfer data between shader stages

Vertex shader Interpolation Fragment shader

Output in vertex shader = input in fragment shader

varying vec2 texCoord;

Varyings

KOM – Multimedia Communications Lab 92

vec3 position;

vec4 color;

Support basic arithmetic

Support swizzling

 color.bgr

 position.xy

Vector types

KOM – Multimedia Communications Lab 93

mat4 projection;

Supports arithmetic with vectors

Matrix types

KOM – Multimedia Communications Lab 94

To read textures

uniform sampler2D tex;

vec4 texcolor = texture2D(tex, texCoord);

Samplers

KOM – Multimedia Communications Lab 95

gl_Position

gl_FragColor

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)

 There are many more

Special vars

https://www.opengl.org/wiki/Built-in_Variable_(GLSL)

KOM – Multimedia Communications Lab 96

precision mediump float;

Precision can be reduced

 Often makes sense in the fragment shader

 And is often necessary (OpenGL ES)

Precision modifiers

KOM – Multimedia Communications Lab 97

Up to version 4.5

Different versions for OpenGL ES

Kore uses „GLSL ES“

 GLSL version used by OpenGL ES 2.0 and WebGL

 GLSL 1.1 plus some 1.2

GLSL versions

KOM – Multimedia Communications Lab 98

main is called kore

 Only difference to real GLSL

To make things easier in Windows use

 node Kore/make -g opengl2

 Optionally debug Direct3D later

 (Deletes your varyings in the fragment shader when they are not used, which

breaks shader linkage)

Shader compiled automatically in Visual Studio

 Not in XCode or Code::Blocks

 Optionally directly work with the files in Deployment

 Beware: A call to koremake overwrites them

GLSL in Kore

KOM – Multimedia Communications Lab 99

#include <Kore/Graphics/Graphics.h>

Straight forward API

Set uniforms ala

ConstantLocation loc = program->getConstantLocation(„bla“);

Graphics::setFloat(loc, 2.0f);

Coordinate system is (-1 to 1, -1 to 1, -1 to 1) like in OpenGL

Kore Graphics

KOM – Multimedia Communications Lab 100

OpenGL Shading Language

Types of shaders

Input and Output

Operations

More info: „Orange Book“ (OpenGL

Shading Language)

Conclusion

KOM – Multimedia Communications Lab 101

Very nicely done “GTA V – Graphics Study”

http://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-

study/

See it in action

http://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/

