Game Technology

Lecture 9 - 19.12.2015 Physics 2

Organization

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Date	Lecture	Topic
24.10 .2015	1	Input and Output
	2	The Game Loop
	3	Software Rendering
	4	Advanced Software Rendering
28.11 .2015	5	Basic Hardware Rendering
	6	Bumps and Animations
	7	Physically Based Rendering
	8	Physics 1
19.12 .2015	$\mathbf{9}$	Physics 2
	$\mathbf{1 0}$	Procedural Content Generation
	$\mathbf{1 1}$	Artificial Intelligence
	$\mathbf{1 2}$	Multiplayer
23.1 .2016	13	Audio
	$\mathbf{1 4}$	Compression and Streaming
	15	Scripting

Organization

Winter break

- No exercise work scheduled for winter break
- $\rightarrow 2$ exercises $(8,9)$
- Exercise 10 might be released during winter break, but will be due after the last block

Last block (January 23)

- 3 lectures, maybe a guest speaker
- Document with example questions

Lecture recordings for this block

- Audio: Today
- Video: December 23
- I'll be unavailable until December 23 (forum, mail)

Exercise results uploaded to „points" branch

Background

„Marbellous"

- Clone of „Marble Madness" (1984)
- Roll a marble through a maze

Ball Physics

- Apply force based on key inputs
- Bounce off off the level geometry
- (Fall from too high)

Level

- Provided as a mesh
- „2D in 3D"

Adding Physics to "Marbellous"

Collision with the level

- Level supplied by artist as 3D mesh
- How to handle the collisions with the mesh?

Friction

- Handle rotations
- Add friction

Controls

- Apply forces when keys are pressed
(Camera control)
- Keep the ball in view
- Don't follow every single movement

Hand-placed colliders

Sometimes good placeholders for objects or level geometry

Planes

- Ground plane
- Simple intersection

Boxes

Spheres

Capsules

Height map

Supplied as a texture or generated

Gives height values at grid points

By interpolating, we can find the height of the mesh under the sphere and the normal

Using the mesh itself

Intersection with triangles

Check all triangles

If sphere intersects a triangle, handle the collision

Using the mesh itself

Intersection with triangles

Check all triangles

If sphere intersects a triangle, handle the collision

If there are multiple collisions

- Handle only one (most prominent)
- Handle all

Separating Axis Test

If two objects are separated, there must be an axis which separates the two objects

- („Separating Axis Theorem" \rightarrow Not a theorem - follows from Hyperplane separation theorem by Hermann Minkowski)
- First mentioned in computer graphics in 1995

Separating Axis Test

More exact

- There must be points P1 and P2 of objects 1 and 2 such that the normal resulting from P2-P1 is a separating axis
- Separating Axis
- Project all points of the objects onto the separating axis
- We get the minimal and maximal points min1, min2 and max1, max2
- The objects are separated iff max1 < min2 or max2 < min1

Separating Axis Test

What the separating axis is NOT

- The separating axis is not a line between the objects
- If the projections overlap, it is not a separating axis
- \rightarrow This can be referred to as separating plane

Separating Axis Test

Infinite set of possible points to test for

It can be proven that an upper boundary exists

- Only the relevant axes have to be tested for
- If separation exists on any axis, the test is done \rightarrow early out for positive test result
- If no separation exists, we still have to test all combinations of features \rightarrow no early out for negative tests
- Can be more efficient to reject the test based on other information, e.g. bounding boxes

For polygonal objects, the features are

- Faces
- Edges
- Vertices

Separating axes for spheres

Spheres have no clear feature points

We have already used the separating axis test, though

- The relevant features for two spheres are the two closest points of the spheres
- We find them by finding the axis from one sphere's center to the other's center
- The intersection test in the previous lecture used this axis for testing intersections

Triangle-Sphere-Test

Relevant Features of the Triangle

- Face (x1)
- Vertices (x3)
- Edges (x3)

Relevant feature of the sphere

- The point on the surface closest to the feature of the triangle

SAT: Testing the plane of the triangle

(We have done this test already - need to define the plane)

Normal: Use the cross product (very useful for finding normal vectors)

- $n=$ normalize ($(B-A) \times(C-A))$

Distance

- Insert one of the points into the equation for distance
- $n^{*} A-d=0$ (since A lies on the plane of the triangle)
- $\rightarrow \mathrm{n}^{*} \mathrm{~A}=\mathrm{d}$

Test for separation

- Separation = distance(Plane, P) >r

SAT: Vertices

Here shown for A (similar for B and C)
Finding the sphere's feature

- Along the line from A to P

Compute distance from \mathbf{A} to \mathbf{P}

Separation (along this axis) iff

- Distance d > r
- And B and C lie on the opposite side

SAT: Vertices

Separation (along this axis) iff

- Distance d > r
- And B and C lie on the opposite side

SAT: Vertices

Separation (along this axis) iff

- Distance d > r
- And B and C lie on the opposite side

SAT: Vertices

Separation (along this axis) iff

- Distance d > r
- And B and C lie on the opposite side

SAT: Vertices

Separation (along this axis) iff

- Distance d > r
- And B and C lie on the opposite side

Separating Axes Test

Demonstration of "on the opposite side"
Calculate using the dot product of AC and AP, AB and AP

SAT: Vertices

Separation (along this axis) iff

- Distance d > r
- And B and C lie on the opposite side
\rightarrow We assume that A-P is the separating axis
\rightarrow No check if A is the closest point
$\rightarrow B$ and C might be separating axes!

SAT: Edges

Here shown: AB

Find a point for \mathbf{Q} for which $Q-P$ is a normal vector orthogonal to $A B$
\rightarrow Projection of P onto $A B$
\rightarrow Use the dot product (ideal for projecting vectors onto each other)
Determine the distance d of \mathbf{Q} to \mathbf{P}

AB defines a separating axis iff

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ

SAT: Edges

AB defines a separating axis iff

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ

SAT: Edges

AB defines a separating axis iff

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ

SAT: Edges

AB defines a separating axis iff

- Distance d > r
- C lies on the other side of the plane through AB with normal PQ

Speeding the calculation up

Note: In our case, the level is essentially 2D

- Most of our collisions will be from the top of the level

Use a space partition

- Regular Grid
- Quadtree
- KD-Tree
- BSP

Regular grid

Subdivide space regularly

E.g. specify

- Cell size in units
- Start point

For each cell

- Test if an object intersects (partly) with the cell
- If so, save a reference to this object
- (Objects can be in several cells)

Advantages

- Easy to compute
- Lookup of cells is trivial

Start point Cell size

Disadvantages

- Sparsity kills the performance
- Clusters

Quadtree(2D), Octree(3D)

Start with a rectangular shape
Subdivide the space into 4 or 8 subdivisions of equal size if the number of contained objects is too large

Until the required minimal number of objects per subdivision is found

Advantages

- Still simple lookup where an object is placed
- Can handle clusters better

Disadvantages

- Can cope less with changing number and position of objects

KD-Tree

Similar idea to Quad/Octree

Subdivide starting from a rectangular shape

Choose the subdividing line

- E.g. median point of the contained objects (cutting them in half)

Alternate axes for subdivision

Advantages:

- Well suited for clusters

Disadvantages

- Lookup harder than octree

Binary Space Partition

Generalization of KD-Tree

Subdivide the space into half-spaces with arbitrary planes

Used previously to speed up rendering (Quake Engine)

Reducing the dimensionality

Many problems in 3D games are essentially 2D

- Heightmaps
- Top-down shooters
- Real-Time Strategy games
- ...

In Marbellous, we can expect that

- No overhangs are present in the level
- The sphere will stay close to the mesh at all times

If we look at the level from above, we can see that if we put a grid over the game world, only the triangles in the same 2D cell can be possibly colliding
\rightarrow During initial setup and the lookup, project everything into 2D

Lookup

Saving the triangles

- We should save only the triangles that are contained in the grid cell
- \rightarrow We need to check intersection between a rectangle and a triangle

Minimizing storage

- Re-use the vertex and index buffer
- Save only the index of the triangle
- (Ideally, we will not suffer from too many cache misses, since the goal in the first place is to reject most collision tests early)

Intersection between the triangles and the grid

Re-use the scanline rasterization algorithm

- Very similar task
- But have to watch out due to larger cell size

Original algorithm

- Find edge longest with biggest ydif
- Fill lines between long edge and other edge 1
- Fill lines between long edge and other edge 2

Triangle Rasterisation

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Triangle Rasterisation

TECHNISCHE
UNIVERSITÄT
DARMSTADT

New algorithm

Calculate intersection with all grid lines

For each row

- Left extent is the minimal intersection point
- Right extent is the maximal intersection point

Triangle Rasterisation

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Triangle Rasterisation

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Intersection between the sphere and the grid

Use the bounding box of the sphere

Defined by the extents in the x-zPlane
(Or implement rectangle-sphere intersection)

Is it worth it?

No (at least not for our exercise)

On a Core2 Duo @2.7 GHz, the intersection with the mesh takes about 0.908 ms in Release mode

But, for production code, larger meshes and more objects, it could become relevant
(Triangle-Sphere Intersection implemented with optimized code by Christer Ericson, http://realtimecollisiondetection.net/blog/?p=103)

Broad Phase vs. Narrow Phase

Broad Phase

Rule out as many possible collisions

Narrow Phase

Check for exact collisions

Use exact tests

- E.g. based on SAT

Should be much slower than broad phase and therefore seldomly called

Provide collision data to resolver

- Use bounding volumes (and bounding volume hierarchies)

Broad phase

No collision possible (surrounding bodies are not overlapping)

Broad phase

TECHNISCHE
UNIVERSITÄT
DARMSTADT

False positive, need to do more detailed collision test \rightarrow Go into narrow phase

Time Handling

Fixed Time Step

- Explicit Time Step \rightarrow Our method
- (Semi-)Implicit Time Step Method
- Try to predict the times of collisions and handle them at the beginning

Adaptive Time Step

- Retroactive Detection
- If there is interpenetration at $\mathrm{t}+$ deltaT, use deltaT * $=0.5$ and retry
- Conservative Advancement
- Predict the next time of collision
- Advance to this time

Continuous Collision Detection

Check if an object moved through another in the frame

- On one side before, on one side after
- Swept shape algorithms

Time of impact ordering

Go to time of impact, resolve there

Speculative Contact

Calculate the distance to the collider

Remove just enough velocity so they touch in the next frame

Speculative Contact

Calculate the distance to the collider

Remove just enough velocity so they touch in the next frame

Constraints

Stiff constraints

- Keep objects at an exact length compared to each other
- E.g. when attached to a steel cable

Springs

- Variable length between objects
- E.g. when attached to a bungee rope

Stiff Constraints - Rods

Distance between two objects is determined to stay constant
\rightarrow Separating Velocity between the two objects along the vector from one to the other should be 0 at all times

Stiff Constraints - Rods

Distance between two objects is determined to stay constant
\rightarrow Separating Velocity between the two objects along the vector from one to the other should be 0 at all times

4. Counter the velocity

Stiff Constraints - Rods

Distance between two objects is determined to stay constant
\rightarrow Separating Velocity between the two objects along the vector from one to the other should be 0 at all times

Spring Constraints

Model a spring between two objects (one might be stationary)

Spring force

- Rest length (no force)
- Stiffness
- (Breaking point)

Hooke's Law

$F=-k$ * $(1-10)$

F: Spring force
k: Spring constant (stiffness)
I: Current length of the spring
10: Rest length of the spring

Apply the resulting force to the objects that are attached (One might be immovable)

Stiffness

Also a property of numerical systems

The stiffer, the more problems we face \rightarrow exploding systems
J. D. Lambert : "If a numerical method with a finite region of absolute stability, applied to a system with any initial conditions, is forced to use in a certain interval of integration a steplength which is excessively small in relation to the smoothness of the exact solution in that interval, then the system is said to be stiff in that interval."

Particle networks

Connect multiple particles with springs

Approximation for deformable objects

Often used for cloth

Problems/Challenges

- Stiff constraints
- Self-intersections
- Stability

Deformable objects

Generalization of particle

 networksFinite Element Method from Mechanics

Model forces inside the object

- Stress
- Strain

Gasses, Liquids

- Discretize into a vector field
- Calculate flow by solving the Navier-Stokes-Equations

Collision handling schemes

Impulse-based Micro-Collisions

- What we are using

Spring-Based

- Insert a spring at the point where the collision is detected
- Forces the objects out again

Constraint-Based

- Formulate the collisions as violations of constraints

Sequential Impulses

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance

Adaptive schemes

- Few, „large" contacts \rightarrow need fewer iterations
- Many contacts \rightarrow need more iterations

Sequential Impulses

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance

Adaptive schemes

- Few, „large" contacts \rightarrow need fewer iterations
- Many contacts \rightarrow need more iterations

Sequential Impulses

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance

Adaptive schemes

- Few, „large" contacts \rightarrow need fewer iterations
- Many contacts \rightarrow need more iterations

Sequential Impulses

Aka. Propagating Impulses

Stability

- Add iterations
- Solve impulses in order of importance

Adaptive schemes

- Few, „large" contacts \rightarrow need fewer iterations
- Many contacts \rightarrow need more iterations

Constraint-based

Constraint Vector

- For each collision or constraint
- Equality constraint
- Objects should stay at a fixed relative position
- Inequality constraints
- E.g. for separating objects after collisions

For each collision, add a constraint to the constraint vector

Results in a large system of equations

Solve via Linear Complementarity Problem (LCP)

Other integrators

Runge Kutta 4th order (RK 4)

$$
\begin{array}{lc}
\text { Runge Kutta 4tn order (RK 4) } & k_{1}=f\left(t_{n}, y_{n}\right) \\
\qquad \begin{array}{cc}
\text { - Approximate from 4 values } \\
y_{n+1}=y_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) & k_{2}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{1}{2} k_{1} h\right) \\
t_{n+1}=t_{n}+h & k_{3}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{1}{2} k_{2} h\right) \\
\text { Velocity-less Verlet integration } & k_{4}=f\left(t_{n}+h, y_{n}+k_{3} h\right)
\end{array}
\end{array}
$$

- Uses no explicitly saved velocity
- Instead, uses position difference between this and previous calculation
- $x(t+\operatorname{delta} T)=2{ }^{*} x(t)-x(t-\operatorname{delta} T)+\operatorname{delta} T^{\wedge} 2{ }^{*} a$

Rotation

Angular Velocity, Acceleration

- Save as additional properties
- Velocity: 3-Vector, Rotations around x, y, z axis
- Acceleration: Change in angular velocity

Mass Moment of Inertia

- Property that resists the change in angular velocity

Torque

- Force acting off-center

Torque

torque $=\mathrm{px} \mathbf{f}$
p is the point of application
f is the force applied

Note: If p and f are in the same direction
\rightarrow No torque

Mass Moment of Inertia

Inertia Tensor - Generalized version of a matrix

For purposes of games, most often 3×3

Diagonal Matrix for moments of inertia about $\mathbf{x}, \mathbf{y}, \mathbf{z}$-axis Off-center entries encode product of inertia

See http://en.wikipedia.org/wiki/List of moments of inertia

$$
I=\left[\begin{array}{ccc}
\frac{2}{5} m r^{2} & 0 & 0 \\
0 & \frac{2}{5} m r^{2} & 0 \\
0 & 0 & \frac{2}{5} m r^{2}
\end{array}\right]
$$

Inverse Inertia Tensor

Remember the calculation of forces
$\mathbf{F}=\mathbf{m}$ * $\mathbf{a} \rightarrow \mathbf{a}=\mathrm{F} / \mathrm{m}$

We need the inverse of the inertia tensor for the equivalent formula

Additionally, need to transform to the world coordinate system
\rightarrow Torques given in world coordinates

Integration

Add an accumulator for Torque

(D‘Alambert‘s Principle also works here)

Add all forces to linear accumulator

Calculate torque for each force

Add torques to torque accumulator

Integration

- Multiply inverse mass moment of inertia with sum of torques

Handling non-spherical rigid bodies

E.g. a box

Can collide with any feature

- Face
- Vertex
- Edge

If we handle only one feature, the others would sink

Sequential impulses

- One part starts sinking into the floor
- Push up \rightarrow Rotation
- Continue
- Needs iterations to get stable

Handling non-spherical rigid bodies

E.g. a box

Can collide with any feature

- Face
- Vertex
- Edge

If we handle only one feature, the others would sink

Sequential impulses

- One part starts sinking into the floor
- Push up \rightarrow Rotation
- Continue
- Needs iterations to get stable

Friction

In the previous exercise, our spheres slided over the floor
\rightarrow No rotation
\rightarrow They came to rest because of dampening and not friction

Friction resists the spheres at the point of contact with the floor

- Rolling along the floor
- Different coefficients
- Ice
- Smooth floor
- Sand
- ...

Coulomb's Law

Depends on

- normal force that presses the surfaces together
- coefficient of friction
- Most dry materials have a coefficient of friction of 0.1 to 0.6

Ff: Friction force
μ : Coefficient of friction Fn: Normal force

$$
F_{f} \leq \mu F_{n}
$$

In 3D

- Tangential plane
- Force lies in this plane

Friction

Static friction

- Keeps objects in place
- Start moving when the limit is overcome
- f_static <= k_static * $|\mathrm{r}|$
- k_static: Constant for friction between the involved materials
- r: Reaction force of the ground at the point of contact

Dynamic friction

- Force between the objects while they are sliding across
- f_dynamic = -v_planar * k_dynamic *|r|
- v_planar: The velocity of the object across the surface
- k_dynamic: Constant for dynamic friction

Contact basis

Calculating friction requires us to calculate the velocity along the contact

Handle collision with a collision basis

3 orthonormal vectors

- x: collision normal
- y, z : Perpendicular to x, define the plane of the contact

Calculating the contact basis

x: Contact normal
y : Choose a vector perpendicular to x

Cross product: A x B is perpendicular to A and B (unless they are parallel)
Use an axis, e.g. global z
$y=x \times(0,0,1)$

Choose third vector to be perpendicular to x and y
$\mathbf{z}=\mathbf{x} \times \mathbf{y}$

Velocity resolution

TECHNISCHE

Find contact basis

Calculate the change in velocity of the contact paint per unit impulse

Invert this to get a way to counter velocities

Calculate the x-term of the impulse (along the collision normal - our old calculation)

Calculate the y and z -terms of the impulse (for friction)

Apply the impulse

Velocity resolution

Find the collision collision normal and point of collision

Velocity resolution

Find the collision normal and point of collision

Velocity resolution

Find the collision basis

Identify the velocity of the collision point

Map velocity into the collision basis

TECHNISCHE
UNIVERSITATT
DARMSTADT

X-Axis (= collision Normal)

Separate the objects (what we did last lecture)

Y and Z-Axis

TECHNISCHE
UNIVERSITAT
DARMSTADT

Handle Friction

Apply changes as impulses

TECHNISCHE
UNIVERSITAT
DARMSTADT

Changes to velocity and rotation

Summary

Collision Detection

- Narrow vs. Broad phase
- Geometrical data structures
- Separating axis test

Physics Implementations

- Different integrators
- Different schemes

Rotation

- Torque
- Resolving velocities with friction

